

XES CERTIFICATION FOR
THE ETHEREUM

LOGGING FRAMEWORK

TABLE OF CONTENTS

Contents

Tool __ 1

Meta ___ 2

Export ___ 3

Appendix A: Proof for CryptoKitties Data __ 37

Contact Information __ 62

EXPORT

Page 1

Tool

NAME

Ethereum Logging Framework1

VENDOR

CSIRO Data61

VERSION

0.2.1

REQUESTED CERTIFICATION LEVELS

Export

A-X

1 https://github.com/ChrisKlinkmueller/Ethereum-Logging-Framework

https://github.com/ChrisKlinkmueller/Ethereum-Logging-Framework

EXPORT

Page 2

Meta

AUTHORS

Christopher Klinkmu ller, CSIRO Data61, christopher.klinkmueller@data61.csiro.au

DATE

7/20/2021

HISTORY

CHANGES

AUTHOR(S) DATE DESCRIPTION

Christopher Klinkmüller 2/7/2021 Creation of the report

Christopher Klinkmüller 20/7/2021 The ELF validator now enforces that all defined
global event attributes were added to all XES
emission statements

EXPORT

Page 3

Export

The Ethereum Logging Framework (ELF) enables users to export data from Ethereum2, a blockchain

technology for executing decentralized applications. Due to Ethereum’s smart contract capabilities,

developers can deploy and execute arbitrary applications with custom data schemas and logic on Ethereum

networks. To obtain data from those applications in a specific analysis context, users can flexibly configure

the data export process via ELF’s Ethereum Querying Language (EthQL). Besides configurations of

connections and output folders, an EthQL script specifies (i) which data must be extracted, (ii) how it must be

transformed, and (iii) how it must be formatted. While ELF offers a variety of operators for all three steps, this

report solely focusses on capabilities related to the export of XES files that comply with the XES certification

levels A-X. More details about ELF’s capabilities are presented in various publications3,4,5.

As the users have full control over the data export process, the XES certification levels that an exported log

adheres to are not predetermined but depend on the user’s specific information needs. In this regard, two ELF

components ensure that the exported logs comply with the intended XES certification levels. First, given an

EthQL script the validator determines the applicable certification levels, identifies issues in the script, and

provides users with a list of errors and warnings regarding violations of the XES certification levels. Second,

the extractor only executes valid scripts and, where applicable, automatically inserts elements to ensure that

the exported logs conform to the identified XES certification levels.

This report outlines how the two ELF components implement the different certification levels and to this end

uses the CryptoKitties application for illustration purposes. CryptoKitties is a popular game in which virtual

cats can be bred and traded. Since its deployment on the Ethereum mainnet on 23 November 20176 it has

been used extensively, resulting in more than 18,000,000 log entries or events, respectively. The examples in

this report are based on a small subset of these log entries. This subset stems from the block range

[6000000,6000024] and as shown in Table 1 and Table 2 comprises four log entries related to the birth and

eight log entries related to the transfer of CryptoKitties. Evidence for the existence of the log entries is

provided in Appendix A in the form of screenshots from Etherscan which is “[…] a Block Explorer and

Analytics Platform for Ethereum […]”7.

2 https://ethereum.org/en/
3 C. Klinkmüller, A. Ponomarev, A.B. Tran, I. Weber, W. van der Aalst (2019): "Mining Blockchain Processes: Extracting Process Mining
Data from Blockchain Applications". In: 17th International Conference on Business Process Management (Blockchain Forum).
4 C. Klinkmüller, I. Weber, A. Ponomarev, A.B. Tran, W. van der Aalst (2020): Efficient Logging for Blockchain Applications.
arXiv:2001.10281.
5 R. Hobeck, C. Klinkmüller, H.M.N.D. Bandara, I. Weber, W. van der Aalst (2021): Process Mining on Blockchain Data: A Case Study of
Augur. In: 19th International Conference on Business Process Management.
6 https://etherscan.io/tx/0x691f348ef11e9ef95d540a2da2c5f38e36072619aa44db0827e1b8a276f120f4
7 https://etherscan.io

https://ethereum.org/en/
https://arxiv.org/abs/2001.10281
https://etherscan.io/tx/0x691f348ef11e9ef95d540a2da2c5f38e36072619aa44db0827e1b8a276f120f4

EXPORT

Page 4

Table 1: The birth log entries created by CryptoKitties in the block range [6000000,6000024]

block number owner kittyId matronId sireId genes
6000000 0x7891f796a5d43466fc29f1

02069092aef497a290
851836 733402 843147 6.837720380099826718906138032746055348279316135

46714648088934817325940739e+71

6000001 0x9d2ac7c3e17163f104e6a
bf5374f502b9f1db102

851837 851455 848263 3.453234984776826125556236409611028125531409057
55311534357255934575740035e+71

6000021 0xdfad6357ae19cad45a316
335f428f3c61c32ffb0

851838 564479 733495 4.583329537453338277917448213499516159551482484
41639183853397842994495719e+71

6000021 0x837ed29de4cab664c550b
721bf26dfc028ef6689

851839 851652 851664 4.491149161912086916725015255410540923111554874
71980646449142346398314529e+71

Table 2: The transfer log entries created by CryptoKitties in the block range [6000000,6000024]

block number from to tokenId
6000000 0x00 0x7891f796a5d43466fc29f102069092aef497a290 851836

6000001 0x00 0x9d2ac7c3e17163f104e6abf5374f502b9f1db102 851837

6000002 0xb1690c08e213a35ed9bab7b318de14420fb57d8c 0xc9a3a9a083a54cf124d8778df29e75b0b6dea159 807523

6000014 0xefe090106ca863145f4a0d50a46021d0643efd6a 0x7ec915b8d3ffee3deaae5aa90def8ad826d2e110 816161

6000016 0xb1690c08e213a35ed9bab7b318de14420fb57d8c 0x36ed2d75a82e180e0871456b15c239b73b4ee9f4 572791

6000021 0x00 0xdfad6357ae19cad45a316335f428f3c61c32ffb0 851838

6000021 0x00 0x837ed29de4cab664c550b721bf26dfc028ef6689 851839

6000024 0xb1690c08e213a35ed9bab7b318de14420fb57d8c 0x9d2ac7c3e17163f104e6abf5374f502b9f1db102 699686

The Birth log entries contain five attributes:

• owner –the account address of the initial owner;

• kittyId – the identifier of the CryptoKitty;

• matronId – the identifier of the CryptoKitty’s mother;

• sireId – the identifier of the CryptoKitty’s father; and

• genes – the integer representation of the CryptoKitty’s DNA.

Similarly, the Transfer log entries comprise three attributes:

• from –the account address of the original owner;

• to – the account address of the new owner; and

• tokenId – the identifier of the CryptoKitty.

EXPORT

Page 5

Figure 1: EthQL template script for exporting CryptoKitties log entries

All CryptoKitties examples in this report extract these log entries from the Ethereum mainnet, but they vary

with respect to the exported attributes. To this end, all examples use scripts that follow the EthQL script

template, which is shown in Figure 1. The preamble (lines 1 to 4) defines the connection to the Ethereum

mainnet node from which the data is extracted, and the output folder into which the data is exported. After

that, the export process is specified (lines 5 to 24). First, the BLOCKS filter (line 6) narrows down the range of

blocks from which data is extracted. Within the scope of this filter, there are two filters for LOG ENTRIES (lines

7 to 14 and lines 16 to 23). These filters specify from which smart contract the log entries should be extracted.

A smart contract is a component of an application deployed on Ethereum. The script uses the address of the

main smart contract of the CryptoKitties application. Each filter also defines the signature of the log entry for

which data must be extracted. Here, the signatures of the birth and transfer log entries are used. Within the

scope of each LOG ENTRIES filter there is one EMIT XES EVENT statement. The first three configuration options

of this statement (in round brackets) define how events are sorted into the log hierarchy. Here, all events are

added to the “CryptoKitties” log, i.e., one XES file ‘CryptoKitties.xes’ containing all event information will be

written into the output folder. Moreover, the identifier of the CryptoKitties is used as the trace identifier, i.e.,

the process notion corresponds to the lifecycle of a single CryptoKitty. We do not specify an event identifier,

meaning that each time an emission statement is executed, a new XES event is created and added to the

respective trace. The last parameter of the EMIT XES EVENT statements is a list of attributes that must be

exported. This list can be configured by the user and ultimately determines the compliance to the XES

certification levels. It is important to note that ELF iterates through block ranges, transactions, and log entries

in the order in which they were included in Ethereum’s blockchain structure. Thus, the data that ELF exports

preserves the order in which it was created. Moreover, in addition to application-specific data, log entries,

transactions, and blocks have standard attributes. For example, the block number, transaction index, and log

index are identifiers for these elements. Following, the support for the different certification levels is outlined.

EXPORT

Page 6

Level A1

Figure 2 shows a script that exports the CryptoKitties log entries in compliance with certification level A1.

The script only defines the concept:name attribute for events and its value (“Birth” or “Transfer”) depends

on the type of the log entry (lines 14 and 23). The definition of XES attributes follows the pattern “<value>

as <xml type> <attribute name>”. While in Figure 2 the value is defined statically, attribute values can also

be determined dynamically at runtime. This feature will be shown later, e.g., when exporting a variable or a

computation result. ELF supports primitive xml types including strings, boolean values, dates, and integer

and floating numbers. Attribute names can be freely chosen. Lastly, the script defines concept:name as a

global event attribute with the default value “default activity” (line 5).

Figure 2: EthQL script for exporting A1 compliant XES logs

EXPORT

Page 7

Executing the script results in the XES file in Figure 3. ELF automatically recognizes the use of standard

extension attributes and adds the respective extension. Here, it added the Concept extension to the file (line

9). Following the specification from the script, concept:name is defined as a global event attribute (lines 10

to 13). Lastly, for each CryptoKitties log entry from the Ethereum mainnet the file contains an event with the

concept:name attribute being set to “Birth” or “Transfer”, respectively (e.g, lines 14 to 16 and 17 to 19).

Figure 3: XES log extracted with the script from Figure 2, only top part shown, entire file available online8

8 https://www.dropbox.com/s/jekcjrrxpkt85xx/A1_1.xes?dl=0

https://www.dropbox.com/s/jekcjrrxpkt85xx/A1_1.xes?dl=0

EXPORT

Page 8

By default, ELF treats the concept:name attribute as a global event attribute which, if not explicitly declared,

is automatically defined as such in the exported log. For example, removing the definition of concept:name

as a global event attribute, see Figure 4, is recognized by the validator which issues a warning as shown in

Figure 5. However, when using the modified script to extract data, the global value for concept:name is now

set to “No global value for concept:name defined” in the resulting XES file (line 11 in Figure 6). The file still

includes the Concept extension (line 9) and the events only contain the concept:name attribute (e.g, lines 14

to 16 and 17 to 19).

Figure 4: The modified version of the script from Figure 2 without the global attribute definition

Figure 5: Validation result of the script from Figure 4

Figure 6: XES log extracted with the script from Figure 4, only top part shown, entire file available online9

9 https://www.dropbox.com/s/2dcpvkl6axdehy9/A1_2.xes?dl=0

https://www.dropbox.com/s/2dcpvkl6axdehy9/A1_2.xes?dl=0

EXPORT

Page 9

The concept:name attribute is the only mandatory XES attribute whose use is enforced by ELF. Users must

add it to all XES event emission statements, otherwise the EthQL script is invalid and ELF will not execute it.

For instance, in the script in Figure 7 the concept prefix was not added to the attribute name in the context

of the Birth event emission (line 14). The validation of this script results in an error message which indicates

that the concept:name attribute was not set, see Figure 8.

Figure 7: The EthQL script is invalid, as it does not specify concept:name for XES events

Figure 8: Validation result for the script from Figure 7

EXPORT

Page 10

ELF also validates that the type that is specified in the script for the concept:name attribute is xs:string.

This kind of type checking is supported for all attributes that are defined in known XES extensions. Currently,

ELF only supports the XES standard extensions. While the explicit definition of the XES type is superfluous, it

is currently required. To reduce the manual specification effort, inference of types of exported XES attributes

from standard extension definitions and EthQL variable types will be added in the future.

To illustrate the type checking, consider the modifications to the script from Figure 2 that are presented in

Figure 9 and Figure 10. Here, the user tries to export integer values for the concept:name attribute in the

context of an event emission statement and in the context of a global event attribute definition, respectively.

As this violates the type definition for concept:name from the Concept standard extension, ELF’s validator

in both cases issues error messages that point the user to the problem, see Figure 11 and Figure 12.

Figure 9: The modification to the script from Figure 2 tries to emit an integer value for concept:name

Figure 10: The modification to the script from Figure 2 tries to define a global integer value for concept:name

Figure 11: Validation result for the script from Figure 9

Figure 12: Validation result for the script from Figure 10

EXPORT

Page 11

Level A2

Users can add event classifiers that rely on the concept:name attribute. To this end, users need to specify the

global classifier in the preamble as shown in Figure 13 (line 7). Exporting CryptoKitties data based on the

modified script results in the XES file in Figure 14. In addition to the traces, the events, the global attribute

definition and the Concept extension, the file now also includes a classifier according to the user’s

specification (line 13).

Figure 13: Modifying the script from Figure 2 to include an event classifier

Figure 14: XES log extracted with the script from Figure 13, only top part shown, entire file available online10

10 https://www.dropbox.com/s/73nkdho6nbudafe/A2_1.xes?dl=0

https://www.dropbox.com/s/73nkdho6nbudafe/A2_1.xes?dl=0

EXPORT

Page 12

Level B1

Users can optionally specify lifecycle:transition and time:timestamp attributes for events. For

example, the script in Figure 15 adds both attributes to the EMIT XES EVENT statements (lines 15 to 19 and

26 to 30). In more detail, as log entries created by the CryptoKitties application are created when a transaction

was successfully executed, the lifecycle:transition attribute is set to “Completed”. Moreover, the

time:timestamp attribute is mapped to the timestamp of the block that included the log entry. Additionally,

both attributes are defined as global event attributes (lines 6 to 7). Note that Ethereum timestamps are

represented as the number of seconds that have passed since the beginning of the epoch. ELF adopts this

convention and does not provide a data type for timestamps. However, when emitting XES events users can

cast integer values into xs:date, resulting in the emission of ISO conform dates.

Figure 15: Adding lifecycle:transition and time:timestamp attributes to the script from Figure 2

EXPORT

Page 13

The export result is shown in Figure 16. In addition to the Concept extension, the XES file now includes the

Time and Lifecyle extension (lines 9 to 10). Moreover, the file contains default values for the

lifecycle:transition and time:timestamp attributes (line 14 and 15) and each event also comprises

the two attributes with the respective values (lines 19 to 23 and 24 to 28). Note that ELF assumes that users

comply with the BPAF lifecycle transactional model, when using the lifecycle:transition attribute.

Hence, the lifecycle:model attribute for the log is set to “bpaf” (line 17), whenever the

lifecycle:transition attribute is used. Note that attribute values might be created dynamically during

the execution of EthQL scripts. Hence, the adherence to the BPAF model cannot be validated at compile time

and it is the user’s responsibility to ensure adherence to this model.

Figure 16: XES log extracted with the script from Figure 13, only top part shown, entire file available online11

11 https://www.dropbox.com/s/v36j1yj0q19b8bz/B1_1.xes?dl=0

https://www.dropbox.com/s/v36j1yj0q19b8bz/B1_1.xes?dl=0

EXPORT

Page 14

Similar to the concept:name attribute, ELF treats the lifecycle:transition and time:timestamp

attributes as global event attributes. Hence, users do not need to explicitly specify the global values for the

attributes as shown in Figure 17.

Figure 17: Removing the global values for lifecycle:transition and time:timestamp from the script in Figure 15

EXPORT

Page 15

In this case, ELF automatically defines these attributes as global event attribtutes. This is demonstrated by

the XES file in Figure 18 that was exported with the modified script from Figure 17 and that contains global

event attribute definitions for the two attributes (lines 14 to 15). Moreover, Figure 19 shows that the validator

issues warnings, if the global values for the two attributes were not set in the script.

Figure 18: XES log extracted with the script from Figure 17, only top part shown, entire file available online12

Figure 19: Validation result for the script from Figure 17

12 https://www.dropbox.com/s/nobxgedxidj190v/B1_2.xes?dl=0

https://www.dropbox.com/s/nobxgedxidj190v/B1_2.xes?dl=0

EXPORT

Page 16

Contrary to concept:name, the lifecycle:transition and time:timestamp attributes are optional and

users are not required to define them in a script. However, if users add one of these two attributes anywhere

in the script, i.e., to an XES event emission or to a definition of a global event attribute, the validator enforces

that the two attributes are defined for all XES event emissions.

Consider for example the script in Figure 20 where the user modified the script from Figure 2 and only added

the time:timestamp attribute once in the context of the birth event emission (line 15). The validation output

for this script is shown in Figure 21. In compliance with the XES certification level B1, there are error

messages related to the missing time:timestamp attribute for the transfer event and the missing

lifecycle:transition attributes for both events. Moreover, the validator issues warnings that there are

no explicit global event attribute definitions for these two attributes.

Similarly, the script in Figure 22 is a modified version of the script from Figure 2 where the

lifecycle:transition attribute is specified as a global event attribute (line 6), but not used anywhere else

in the script. The validation output for this script is shown in Figure 23. Again, there are error messages

related to the missing time:timestamp and lifecycle:transition attributes for both events. Moreover,

the validator issues a warning that there is no explicit global event attribute definition for time:timestamp.

Figure 20: Adding the time:timestamp attribute only for the birth event to the script from Figure 2

EXPORT

Page 17

Figure 21: Validation result for the script from Figure 20

Figure 22: Adding the lifecycle:transition attribute as a global event attribute to the script from Figure 2

EXPORT

Page 18

Figure 23: Validation result for the script from Figure 22

EXPORT

Page 19

Level B2

The lifecycle:transition and time:timestamp attributes can be used for event classifiers, if the script

satisfies the conditions of certification level B1. This is shown in Figure 24 where in addition to the classifier

“Event Name” (line 9), a classifier “Event Name and Transition” based on the attributes concept:name and

time:timestamp is added (line 10) to the script from Figure 15. Executing the script results in the XES file

shown in Figure 25. The file now contains the two classifiers specified by the user (lines 17 and 18).

Figure 24: Adding classifiers to the script from Figure 15

Figure 25: XES log extracted with the script from Figure 24, only top part shown, entire file available online13.

13 https://www.dropbox.com/s/b4wa5g9tebxdudw/B2_1.xes?dl=0

https://www.dropbox.com/s/b4wa5g9tebxdudw/B2_1.xes?dl=0

EXPORT

Page 20

Level C1

Users can also define the org:resource attribute for events as shown in Figure 26. Here, org:resource is

defined as a global event attribute (line 6). The identifier of the CryptoKitty (kittyId and tokenId) is also

used as the value for this attribute (lines 16 and 26). Note that the identifiers from the Ethereum log entries

are integer values, but org:resource is defined as a string attribute in the Organizational extension. Here,

the emission statements use explicit type conversion to cast the integer values into string values. In general,

ELF supports type conversions known from conventional programming languages. Unsupported conversions,

for example, when casting strings into integers, are flagged by the validator.

Figure 26: Adding the org:resource attribute to all events in the script from Figure 2

EXPORT

Page 21

The execution of the script from Figure 26 yields the XES file in Figure 27. Due to the use of the org:resource

attribute, the Organizational extension was automatically added (line 9). Moreover, the attribute is defined as

a global event attribute according to the specification from the script (line 13) and the CryptoKitty identifiers

are added as org:resource attributes to all events (lines 18 and 22).

Figure 27: XES log extracted with the script from Figure 26, only top part shown, entire file available online14

14 https://www.dropbox.com/s/56gorj24z3t1nih/C1_1.xes?dl=0

https://www.dropbox.com/s/56gorj24z3t1nih/C1_1.xes?dl=0

EXPORT

Page 22

Similar to the lifecycle:transition and time:timestamp attributes, the org:resource attribute is

optional, but if it is used anywhere in the script, it must be added to all XES event.

For example, the script in Figure 28 adds the org:resource attribute only to the birth event (line 15) and

does not specify it as a global event attribute. As shown in Figure 29, for this script the validator issues an

error message that the org:resource attribute must be added to the transfer event as well. Moreover, the

validator also emits a warning that the org:resource attribute was not explicitly defined as a global event

attribute and that such a definition will hence automatically be added during extraction.

Similarly, the script in Figure 30 specifies the org:resource attribute as a global event attribute (line 6)

without adding it to any of the XES event emissions. The validator recognizes this and returns error messages

that ask the user to add the attribute to both XES event emissions, see Figure 31.

Figure 28: Adding the org:resource attribute only for the birth event to the script from Figure 2

Figure 29: Validation result for the script from Figure 28

EXPORT

Page 23

Figure 30: Adding the org:resource attribute as a global event attribute to the script from Figure 2

Figure 31: Validation result for the script from Figure 30

EXPORT

Page 24

Level C2

The org:resource attribute can also be used in event classifiers as shown in Figure 32 (line 9). As expected,

the execution of this script results in an XES file with two event classifiers, see in Figure 33 (lines 15 to 16).

Figure 32: Adding global event classifiers to the script from Figure 26

Figure 33: XES log extracted with the script from Figure 32, only top part shown, entire file available online15

15 https://www.dropbox.com/s/unffbqqqj6x9arv/C2_1.xes?dl=0

https://www.dropbox.com/s/unffbqqqj6x9arv/C2_1.xes?dl=0

EXPORT

Page 25

Level D1

In addition to the standard extension attributes covered by the certification levels A-C, ELF also supports the

remaining standard extension attributes. While users can add these attributes to any XES event emission, ELF

does not explicitly add global event attribute definitions for standard attributes that are not covered by

certification levels A to C. If required, such definitions must be added manually by the user.

For example, the script in Figure 34 extends the base script from Figure 2. That is, the org:role attribute is

now added to the birth event (line 17). Additionally, both events contain the cost:total attribute that

provides information regarding the specific cost associated with the execution of the transfer transaction (line

18 and 29). The cost is calculated from information about the transaction that included the log entry (line 14

and 26). Here, tx.gasPrice is the price that the sender or requester of the transaction was willing to pay

per unit of gas and tx.gasUsed is the amount of gas that was actually consumed by this transaction. Note

that gas is a unit used to measure the computational effort of operation executionss on Ethereum networks.

Lastly, the cost:total attribute is also defined as a global event attribute (line 6).

Figure 34: Adding org:role and cost:total attributes to the script from Figure 2

EXPORT

Page 26

The output generated by this script is shown in Figure 35. ELF recognized the use of attributes from the Cost

and Organizational extension and automatically adds the two standard extensions (lines 9 to 10). Moreover,

the birth events now contain the org:role attribute (line 19), whereas all events also contain the

cost:total attribute (line 20 and 24). Moreover, the cost:total attribute was defined as a global event

attribute following the specification from the script (line 14).

Figure 35: XES log extracted with the script from Figure 34, only top part shown, entire file available online16

16 https://www.dropbox.com/s/qbpr0tatm71o2wn/D1_1.xes?dl=0

https://www.dropbox.com/s/qbpr0tatm71o2wn/D1_1.xes?dl=0

EXPORT

Page 27

When a standard extension attribute is defined as a global event attribute, ELF ensures that it is added to all

XES event emissions. For example, consider that the user forgot to add the cost:total attribute to the

transfer event (lines 26 to 28) in Figure 36. The validator realizes the missing cost:total attribute for the

transfer event and issues the error message from Figure 37.

Figure 36: Removing cost:total from the transfer event emission in the script from Figure 34

Figure 37: Validation result for the script from Figure 36

EXPORT

Page 28

In general, ELF checks that the standard extension attributes exist and that their types are correctly used. For

example, the script in Figure 38 contains a few errors.

1. line 6: an attribute with the name cost:tota is not defined in the Cost extension;

2. line 7: the org:role attribute must be of type xs:string and not of type xs:boolean;

3. line 18: the org:role attribute must be of type xs:string and not of type xs:int; and

4. line 31: there is no standard extension with the cst-prefix, hence an cst:total does not exist.

All these errors are identified by ELF’s validator which issues the error messages in Figure 39.

Figure 38: Incorrect usage of standard extension attributes

Figure 39: Validation result for the script from Figure 38

EXPORT

Page 29

Level D2

The standard extension attributes can be used to define event classifiers. For example, in Figure 40 an event

classifier based on the concept:name and cost:total attributes (line 10) is added to the script from Figure

34. Based on this modification, the exported log now also contains this classifier, see Figure 41 (line 17).

Figure 40: Adding an event classifier to the script from Figure 34

Figure 41: XES log extracted with the script from Figure 40, only top part shown, entire file available online17

17 https://www.dropbox.com/s/gg9ocj1oftuzwj2/D2_1.xes?dl=0

https://www.dropbox.com/s/gg9ocj1oftuzwj2/D2_1.xes?dl=0

EXPORT

Page 30

ELF verifies that standard extension attributes which are part of classifiers are defined as global event

attributes. If this is not the case, the validator returns a respective error message. For example, the script in

Figure 42 adds the org:role attribute instead of the cost:total attribute to the classifier (line 9). As

org:role is not defined as a global event attribute, this modification results in the error in Figure 43.

Figure 42: Removing global event attributes from the script in Figure 40

Figure 43: Validation result for the script from Figure 42

EXPORT

Page 31

Flag X1

Depending on the use case, analysts might require data that cannot be modeled by the XES standard extension

attributes. In such situations, users can add arbitrary attributes. Note that currently ELF does not support the

use of custom extensions, but it supports all standard extensions.

For example, the script in Figure 44 uses the standard extension attributes covered by certification levels A-C

and includes additional information via several non-standard attributes. The attributes blockNumber,

txHash, txSender and txRecipient are emitted for both log entry types (lines 22 to 25 and 38 to 41). These

attributes provide standard information about the block and the transaction that included the respective log

entry. Moreover, the attribute txRecipient is added as a global event attribute (line 9).

Figure 44: Using attributes that are not defined in standard extensions

EXPORT

Page 32

The execution of the script results in the log from Figure 45. Here, the standard extension attributes and the

txRecipient attribute are defined as global event attributes (lines 13 to 19). All events comprise the

specified standard extension attributes and additionally the blockNumber, txHash, txSender and

txRecipient attributes (lines 23, 26, 27 and 29 and lines 33, 36, 37 and 39).

Figure 45: XES log extracted with the script from Figure 44, only top part shown, entire file available online18

18 https://www.dropbox.com/s/h7y2y43e3bm3jbt/X1_1.xes?dl=0

https://www.dropbox.com/s/h7y2y43e3bm3jbt/X1_1.xes?dl=0

EXPORT

Page 33

The validator performs various checks to support the use of non-standard attributes. For example, the script

in Figure 46 comprises four different types of errors.

1. Lines 17 to 25: The txRecipient attribute was defined as a global event attribute (line 9), but the

birth event emission does not include this attribute.

2. Line 24: tx.from encodes the identifier of the account that requested the transaction. On Ethereum

it has the type address (a hexadecimal string of length 20), but the script tries to emit it as an integer.

This is an unsupported type conversion.

3. Line 37: The blockNumber attribute is not used consistently. It is emitted as an integer value for the

birth event (line 22) and as a string value for the transfer event (line 37).

4. Line 40: The txRecipient attribute is also not used consistently. In the global event definition, its

type was set to xs:string (line 9), but in the transfer event emission the type was changed to

xs:int (line 40).

The validator recognizes these errors and when processing the script returns the error messages in Figure

47.

EXPORT

Page 34

Figure 46: Invalid changes to the script from Figure 44

Figure 47: Validation result for the script from Figure 46

EXPORT

Page 35

Flag X2

Non-standard attributes can also be used to define classifiers. For example, the script in Figure 48 adds an

event classifier “Transaction recipient” to the script from Figure 44 (line 11). This classifier uses the

txRecipient attribute which is also defined as a global event attribute (line 9). As shown in Figure 49, when

exporting the data using this script, the log now contains the specified classifier (line 20).

Figure 48: Defining an event classifier based on a non-standard attribute, based on the script from Figure 44

Figure 49: XES log extracted with the script from Figure 48, only top part shown, entire file available online19

19 https://www.dropbox.com/s/4rs23rmnojazt8s/X2_1.xes?dl=0

https://www.dropbox.com/s/4rs23rmnojazt8s/X2_1.xes?dl=0

EXPORT

Page 36

However, users cannot add attributes to classifiers without specifying them as global event attributes. For

example, the script in Figure 50 defined a second classifier “Transaction Sender” (line 12). It contains the

txSender attribute which was not defined as a global event attribute. This is recognized by the validator

which informs the user about the problem by issuing the error message in Figure 51.

Figure 50: Adding a second classifier to the script from Figure 48

Figure 51: Validation result for the script from Figure 50

EXPORT

Page 37

Appendix A: Proof for CryptoKitties Data

Figure 52: One birth and one transfer log entry were created by the CryptoKitties smart contract in block
6,000,000

EXPORT

Page 38

Figure 53: Details for transaction
0xa8f2cf69e302da6c8100b80298ed77c37b6e75eed1177ca22acd5772c9fb9876 that included one birth and

one transfer log entry from the CryptoKitties smart contract in block 6,000,001

EXPORT

Page 39

Figure 54: One birth and one transfer log entry were created by the CryptoKitties smart contract in block
6,000,001

EXPORT

Page 40

Figure 55: Details for transaction
0x7fa569ac010ceac5ac405e4fb5d8d7e050e8362c0d39daf9609b965bd847c7b8 that included one birth and

one transfer log entry from the CryptoKitties smart contract in block 6,000,001

EXPORT

Page 41

Figure 56: No log entries were created by the CryptoKitties smart contract in block 6,000,002

EXPORT

Page 42

Figure 57: One transfer log entry was created by the CryptoKitties smart contract in block 6,000,003

EXPORT

Page 43

Figure 58: Details for transaction
0xb81146ccfa12bf24bac2709e925597841ae9843418a7afaee39421be140d7c1c that included one transfer log

entry from the CryptoKitties smart contract in block 6,000,003

EXPORT

Page 44

Figure 59: No log entries were created by the CryptoKitties smart contract in block 6,000,004

Figure 60: No log entries were created by the CryptoKitties smart contract in block 6,000,005

EXPORT

Page 45

Figure 61: No log entries were created by the CryptoKitties smart contract in block 6,000,006

Figure 62: No log entries were created by the CryptoKitties smart contract in block 6,000,007

EXPORT

Page 46

Figure 63: No log entries were created by the CryptoKitties smart contract in block 6,000,008

Figure 64: No log entries were created by the CryptoKitties smart contract in block 6,000,009

EXPORT

Page 47

Figure 65: No log entries were created by the CryptoKitties smart contract in block 6,000,010

Figure 66: No log entries were created by the CryptoKitties smart contract in block 6,000,011

EXPORT

Page 48

Figure 67: No log entries were created by the CryptoKitties smart contract in block 6,000,012

Figure 68: No log entries were created by the CryptoKitties smart contract in block 6,000,013

EXPORT

Page 49

Figure 69: One transfer log entry was created by the CryptoKitties smart contract in block 6,000,014

EXPORT

Page 50

Figure 70: Details for transaction
0x29c09f80fcf1c5141faea0795d2398e55a92218184db4be283129ce72c7b2c0f that included one transfer log

entry from the CryptoKitties smart contract in block 6,000,014

EXPORT

Page 51

Figure 71: No log entries were created by the CryptoKitties smart contract in block 6,000,015

EXPORT

Page 52

Figure 72: One transfer log entry was created by the CryptoKitties smart contract in block 6,000,016

EXPORT

Page 53

Figure 73: Details for transaction
0x050a11c46f9f29c21883c9df55e37b7170ba9c45f4dc673ba21f2ea7dcea7260 that included one transfer log

entry from the CryptoKitties smart contract in block 6,000,016

EXPORT

Page 54

Figure 74: No log entries were created by the CryptoKitties smart contract in block 6,000,017

Figure 75: No log entries were created by the CryptoKitties smart contract in block 6,000,018

EXPORT

Page 55

Figure 76: No log entries were created by the CryptoKitties smart contract in block 6,000,019

Figure 77: No log entries were created by the CryptoKitties smart contract in block 6,000,020

EXPORT

Page 56

EXPORT

Page 57

Figure 78: Two birth and two transfer log entries were created by the CryptoKitties smart contract in block
6,000,021

EXPORT

Page 58

Figure 79: Details for transaction
0x3d2a60292a8e713aac489758919f416972a8034460fe6f3f5424bf263357120e that included two birth and

two transfer log entries from the CryptoKitties smart contract in block 6,000,021

EXPORT

Page 59

Figure 80: No log entries were created by the CryptoKitties smart contract in block 6,000,022

Figure 81: No log entries were created by the CryptoKitties smart contract in block 6,000,023

EXPORT

Page 60

Figure 82: One transfer log entry was created by the CryptoKitties smart contract in block 6,000,024

EXPORT

Page 61

Figure 83: Details for transaction
0xc4fddacabcb09a5ab96f24e0b20e0c2a2aa5a3ecb7420ed2adfbc411425b25ca that included a transfer log

entry from the CryptoKitties smart contract in block 6,000,024

EXPORT

Page 62

Contact Information

WIL VAN DER AALST
CHAIR

 CHRISTIAN GÜNTHER
VICE-CHAIR

 ERIC VERBEEK
SECRETARY

Tel +31 40 247 4295

w.m.p.v.d.aalst@tue.nl

 Tel +31 64 1780680

christian@fluxicon.com

 Tel +31 40 247 3755

h.m.w.verbeek@tue.nl

IEEE XES Working Group

IEEE Task Force on Process Mining

http://www.win.tue.nl/ieeetfpm

